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ABSTRACT

'The axisymmetric elastic-plastic torsion of a shaft of general shape

subject to the Hencky consistency condition with the von Mises yield function

is considered. It is proved that the Haar-Kfrmln principle is valid in this

case, and that the problem is essentially two-dimensional. The problem is

reformulated as a variational inequality, and the existence and uniqueness of

the solution is studied.
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SIGNIFICANCE AND EXPLANATION

When a shaft of circular cross section is subjected to a torque, a

,: istic enclave may appear. The boundary between the elastic region and the

plastic region is unknown. It is a so-called free boundry problem.

Assuming that Hencky's consistency condition with the von Mises yield

function is satisfied, we can prove that the Haar-Kirmin principle is valid,

which means that the strain energy must be minimized subject to the constraint

that the stress should not exceed its permissible limit. We show that the

problem is essentially two-dimensional, and give two kinds of variational

formulations of the problem: one for the stress field, the other for the

stress function. The existence and uniqueness of the solution of the

variational inequality for the stress function is proved.
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ON AN AXISYMMETRIC FREE BOUNDARY PROBLEM

Shu-Zi Zhou*

1. Introduction

The elastic-plastic torsion of shafts is one of the classic free boundary

problems. For the case of that the cross-section is constant, it has been

studied deeply by using variational inequalities during the last decade 'see,

for instance, Ting (1971, 1976], Bresis and Sibony (1971], Lanchon (19741,

Friedman (1980], Pozzi [1980]). Recently, Cryer [1980] has considered the

case in which the shaft has variable cross-section and rotational symmetry.

He has proved the existence, uniqueness and regularity of the solution of the

variational inequality problem for the stress function under some assumptions.

He has assumed that the function it describes the generator of the rotational

shaft is monotone. In this paper we consider the case in which the generator

may have more general shape, give two kinds of variational formulation of the

problem: one for the stress field, the other for the stress function prove

that Haar-Kirman principle is valid and the problem is essentially two-

dimensional under the so-called Hencky's conditionse study the existence and

uniqueness of the solution.

I am grateful to Professor C. Cryer for many valuable discussions.
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2. Classical problem

Let Figure 1 represent a shaft of circular cross section with equal and

opposite pure torques T applied at the ends. Assume that the material is

homogeneous, isotropic, and elastic-perfectly plastic, that there are no body

forces, and that there are no external tractions on the lateral surface. Our

aim is to find the resulting stress distribution.

Figure I

Setting up a cylindrical coordinate system in which the z-axis coincides

with the center line of the shaft and the origin lies in a end of the shaft,

we assume that the equation for the generator is r = R(z). Let (see Figure

2)

S1=((z,r): 0 < z < L, 0 < r < (z))

r = {(z,r): 0 4 z 4 L, r - 0)0

r, f {(z,r): 0 4 z ( L, r - R(z)}

r - ((z,r): 0 < r < R(0), z - 0)
21

r22 = (z,r): 0 < r < R(L), z - LI

r -r ur
2 21 22
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Figure 2

Then we have (Eddy and Shaw 119491).

1- 2Classical Problem: Find stress function v e c: (11) nl c (a1) such that

IVvI ( ic2 in Al (kc in a constant given)
a -3a8v a -3 av

AV R -(r -)- (r Vr -o0

in A fl {(r,z): IVvI < kr 2

v -0 on vinT/2! on r
av

This formulation of the problem is based on the von Mises yield criteria,

and on the so-called semi-inverse method given by Saint-Venant (see, for

instance, Tixnoshenko et a1. [1951, p. 259, p. 306]) in which one assumes a

priori that there are no radial and axial displacement. This fact will be

proved in section 4 of this paper.

3. Haar-xirma'n principle

The argument we use in these two sections is similar to that in Lanchon

[1974] for the case of constant cross section.

From now on we assume that

RWz is piecewisely, continuously differentiable

R'(0) ji -10, R'(L) ' 4fm (3.1)

-3-



which implies that $1 is strongly Lipschitz domain. Then the three
*

dimensional region f occupied by the shaft is also strongly Lipschitz

domain. Its boundary is

1 .r I u rIu

where r is the lateral surface while F21 and r22 are the end surfaces.

Denote by U r, U and uz  the components of the displacements in the

radial, tangential and axial directions respectively. Let

T TU - [UrUOUzIT , o - [00re,azaezOrzr6]T
C uu [r 1, r''zzP'rCrerT

where a-stress field, C-strain field. Then we have (see, for instance,

Timoshenko et al. (1951, pp. 305-3081)

au u 1 au u
e r w TF , e - + Wr Cu u

au I au au au u au U
-~z + -*r ' 6r," - + r ' 6 r8 " - * r-"

in g (3.2)r +1 r8  rz + r 8e + 18 0 j_
re - r- +-z " - ' X or

3Or6  ao8  3083 2 0 r6

--r + 1Ia O 3 z+ar-Y 0i 32

- r - + - +--- 0
aao IO~ au o aa o+ 1ar r

= + + - - 0 in * (3.3)

We have the boundary condition as follows:

On + 0 n - 0
r r rz z

a en + a nz  0
rer ezz

0 n + 0 n - 0 on r' (no external tractions) (3.4)
rz r z I

" Oz - z = 0 on r u r (pure torque) (3.5)
rz 2z 1 22

'r;' rez d r* rQezd T (3.6)

22

-4-
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where (nr , no, nz ) = n is the outer normal of 3 . (Obviously, n is

well-defined a.e. on . because of (3.1), and no - 0 on 3, nr - 0 on

r* u
2 1  2 2

Assume that the resulting stress field a0 satisfies the Hencky's

consistency conditions (Lanchon (19741)

F(a0 ) 0

C0 = AU 0 + )

xT(o-O)( 0, V a e m1  (3.7)

where F(U) is the von Mises yield function
F(O) _I (02 + 02 + r2 + 2 0) -2 ( + + (3.8)

(0 o z + rz + re 6 r 0 z -

x [Xr,.. Arz]T , 41 - [0 : F(C) 4 0), and A is the matrix in the Hooke's

law (Timoshenko et al. [1951, p. 7, p. 66])

1 -V -V

-V 1 -V

1 -V -V 1 (3.9)

2(1 +V)

(2( (+V)

2 (1+V).

where Z is the modulus of elasticity and V is the Poisson's ratio with

0 < V < 1/2.

Let

M2 = (a e M [H1()] 6 , satiefies (3.3) - (3.6)0

where the a in (3.4) - (3.6) is the trace of a on 30 (see, for

instance, Ne~as (1967, p. 15]).

Proposition 3.1. If (3.2) and (3.7) are valid for a e m then the

Haar-Karman principle is valid in this case, that is

-5-
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1(0) = mn J 1(0)

where 
082

J(a) OTAOdV (3.10)

Proof: V 0 e m 2, we have (noting that A is symmetric)

(a) - J (0 0 ) f .(OTAO - (O0)TAo0)dV
1 1 2a

Sf (O-.O0)TA(_O° )dV + f(O°) TA(O-O°)d

It follows from Gerschgorin's theorem (Varga [1962, p. 16]) that all of the

eigenvalues of A are not less than (1-2V)/E > 0. Hence

xTAx (1-2V)x2 /E, V x e R6  (3.11)

and we have

1( -10) f * (O0)TA(0-0) v

f (C) (0)T40 )dV (since (3.7))

au0 O 0 au0 0 u0

f * '(r 0 ) + + 1 .)(00 ) + - z (z-00)

au0  au0  3u0  8u0

+ (y + I (0e00 + ( r + Zr)O rz +"N-z 770(e- °) Oz ez -IT T-3r 4r- - +

auO  au0  U0

+ (I r + - - 0)(a 8 -o0O)1rdrdedz (since (3.2))

0 '( 0 n 0 0 0 0
f*(r((r-0r) r + (0 rJ0z )nz) + UO(a (r8e0 re)n r + (a~z0 ez )n z

0 0 o3Y
u((a -0  )n + (Oz-%)n ))dS - f (U r(C (r-Y) +
z rz rz r zzrT

1 a (a000) + 0 (ar-ar)(0)8-a) 0 3 0
r 0 re z rz r-0 + r + u8%- (T e-e) +

-6-
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a (e0) + (e0-0) + ) + u z4. (0r, r +

130 3 0 1 0
-- ez 1 ) r (0-0)11 (Green's formula)

0 0 (since (3.3) - (3.5))

Q.E.D.

About more general discussion on the Haar-Kirman principle, see Martin

(1975, pp. 733-736].

4. Variational formulation of the problem

Proposition 3.1 suggests the following variational formulation of our

problem.

Problem (A) Find 0 e M2  such that

J 1 (0 0 )  m ,in JI (Co)
2eM2

where J1  is defined by (3.10).

It is easy to show the following assertion.

Proposition 4.1. Problem (A) is equivalent to the variational inequality

S e 02  v(4.1)
a1 (coO , o-o O) ;) 0 ¥ o e M2

where

a(01,02) (0 1)TA  2 d (4.2)

Proposition 4.2. Problem (A) has at most one solution.

0 1Proof: If 0 and a are solutions, then we have by (4.1)

0 1 0
a Io 1 , 0 -a ) > 0

-7- 447 ,



By virtue of (3.11) we obtain
(1-2v) f ( 1-o0)2 /E a (-O, a1-a0

1 - 10 10

= -a1(ol, Qo-) - al(0O, ol-o O) ( 0

1 0O *

Hence a 0 a.e. in Q ,

Q.E.D.

0Theorem 4.3. Assume problem (A) has solution 0 Then

(a) 00 =0 =00 00 0 a.e. in Q*
r 8 z rz

(b 30 *
aau~ 0(b) =0 ae. in al

Proof: Let 0 - [0, 0, 0, a 0, 0 in 0 and

a =LfJWo 0do in A? 2 0 °ez
a 1 0-f2 1ro °  do in *

rO T10 ro

If we can prove * e M2  and

J 1 (0*) 4 J1 ( ) , (4.3)

then the conclusion of the theorem is clear by Proposition 4.2.

1 6
At first we prove that a e CH1 (n*)] Recall that n is defined by

(2.1) and it is the cross-section of A by plane O=onstant. Define space

2
L2(0 ) = {v : v measurable in 0, Ivl 2 <

with norm r

IVL2( = f v2rdrdz
L()

r
and define a distribution

<cOz , V>,r = fa a oz vrdrdz, V v e C0 (0)

V 'pe C (9), define
0

0(r, =,z) -(r,z) in n (r O1

I(0,O,z) = 0

Then we have

VW..



* 1 f a 0 * dV1

21! rz 2w 8z222w iO0zlL2 (11)~ L 2o IS •r e.I ( L2N1

r

Hence 0z (more precisely, its restriction in L) belongs to the dual space

of L2 (1L) and then
r "

a* e L ()

So

f (a8Z 2dV dO fa (0 2) rdrdz 21FI0. 2  <C
* 2 2 L 2()

r

i.e. a; e L2 (g*). Similarly, we have

30 0
I ezv -= 0- d •L2(1.

Given v e c0(fl), we have

0o0

<v, P>f,r - f. (ii -~
w dO)iPrdrdz

a0 0(r
f f~O~Z 1 d efa = rdrdz

2 =r 0

(200 dO (,r)

de) t308d

fa aez drdz -f" = Ordrdz

<--r > S> 1, r "

It means that

*0
6 I 2w e z dO@ 8 L 2 l 0

- 9-
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Similarly, we obtain

12w e d e L21(a
=z 0 =z

But .

00

Hence 08 e HI( *). The same argument indicates that ar e H (Q*). and we

obtain

Ie [H(f )JI

Turn to (3.3) - (3.6). Check the second equations of (3.3) and (3.6) for*
0':

80 2 300 30 0ac 0• " " Oor8 eoz 2O
1z 28rO 1 f _w ( r 2cdz

-20r + - +-z + -F-- 2-  + r

a2" dO (since (3.3))

-0 (periodicity of 0 in 8)

f * rO S- f r(2  j 0 w o0  de) rde'dr
r r 2 ez
22 22

=1.. f2l dO' fR(L) drf~ 2 00d

2w 0 0 0 r0 8 d
,1 O r ro T

"0(Lr rf2° d - , rOz dS T

22

The rest of (3.3) - (3.6) is clear.

Now we prove
* ;z2 2 k2

F(O = ( 2 + ( -k (0 (4.4)

We have

z 2 * 2 * * * *

(o + (rO) - Oz ez +OrOOr

-10-



1 2 0 * + a 0  )d
aW 0 ~0 z 6z rOr

2( 0o (0Sz) 2 + (rq))d 8)2 (f 2
l 0 2 + 021/

!..2N 2 *21/re 0 ((ez (re) d)

I [ ( * )2 + r / f 0 2 + 0 0

i .e.

,y* )2 + (0*) 2  L f2l [(0 2 + (00 ) 2]dG (4.5)1 z'2W re,Oz ro 2w 0o ,,.r,
On the other hand, we have

0)2 + (e)2 F(O° ) + 2 k .k

Therefore, we obtain

(a 2 + (0* )2 f 2 k2 de- k2

o (e 2w 0

i.e., (4.4) is valid, and a e m2H
0Finally, we compute 3 (0 ) ( Clearly,

T 2(1+ ') * 2 * 2
(0) AO I~ f(0eZ) + (ar0)]1

(T 1 H0) 02 02 + 00 00
E r e (0)2 2V(0a +r z 8 z

+ 2(1+v) 0r e)2 + (a0)2 + (aO0)2] 2(1+v) [( 0()2 + (a0re) 2

(since 0 < v <1

It follows from (4.5) that
f •u 2 + ; 2 ]ci0 a~ 2  0)2]

[(Oez)2 + 1o ]dV f . [(00 )2 + ( 0)dV

2(311(0 J(0*)) r f [(o0)TAO0 (o*) TA]UdV

> 2(1+v) (f (c0 )2 + 20 - r * 2 ) 2 W 0
E e*~

0 z1  re (a8 i ' ~ +~
0  dn

(4.3) has been proved, and the proof of the theorem is completed.

QE.D.

-11-



The basic idea of the above proof is the same as that of the so-called

semi-inverse method.

This theorem enables us to take the set

N = {a eM 2 : a 0 . a a = 0 in f0*
2 r 8 z rz

as the set of the admissible stress vectors instead of M 2 in problem (A).

Then we have the following problem.

Problem (B). Find o0 e N such that

J1 (0 ) = mmn J1 (O)
OSN

Obviously, problem (B) has at most one solution; if a0 is the solution

of problem (A), then it is also the solution of problem (B).

Remark 4.1. If a e N, then it follows from (3.3) that

a cez 3 r e

Therefore,

S(0) -(I+V)2w (0)
1 0

where
.lo0)= j' 2 2

o fn (2 + Oez)r drdz

5. The variational problem for stress function

If problem (B) has solution a0 e [C0 (fl)]6, then we have by remark 4.1:

00 e N, J0 (a
0 ) 0 min J0 (0) (C)

where N, is a subset of N:

N, = (o e N : a e [c°(fi)] 60

v a e Ni, by virtue of (3.3) we have

7- (r2OrO) z (r 2z) 0

Then it is easy to show that there exists v e H2 (f) n C1 (17) such that

-12-
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v 2 2 w _2
T r2Oez T - 2re n U

av

Hence 7 - 0 on r. , and v* - C, on rO . Let v -v -c 1 . Then

av 2 av 2
r ez - r in U (5.1)

v M 0 on r (5.2)

Jo () I( 2 (i:)2Idrdz E J(v) (5.3)

It follows from (3.4) and (5.1) that
dv av acv

- - cos (n,r) + cor (nz) - 0 on r'

where s is the tangential direction of rI. Therefore,

v - C2  on r 1 (5.4)

Since (3.6), (5.1) and (5.2), we have
2v fR(o) 2o z f R(o) 3v

Tf = d 0 0fROdrd) 2w 0 dr 2w v(O,R(0)) , (5.5)

Combine (5.4) and (5.5) we obtain

v - T/21 on r (5.6)

By (3.5) and (5.1) we have

von r (5.7)

Tn' 2

It follows from F(O) I 0 that
2 4 2 2 2r4

Ivl 2 - r (re + 0 8z (kr

IVvl < kr2  in f * (5.8)

Since a e cN 1 (a')] 6  we have

are, Oe Hl)

where

21 av 2v 2Hl(0l) - {v 0 L2(a) ' : e L(f)

L 2(Q) is defined by (4.3).

Hence
-2 av -2 av Ir 'r r 6 H_ (5.9)

particularly,

-13-
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f r-3 (3v)2drdz, f r-3( v)2drdz < . (5.10)

Finally by (5.1) and (5.2) we have

2 _ (fo r206 dr) 2  fo r 4 d r * f o r Cr5

so

fa r-5v2 ddz < (5.11)

Now let

N2 - ( v H2(9) nCIC(1), (5.2) and (5.6) - (5.9).are valid)

Then it is easy to see that (5.1) - (5.2) defines a biunivocal map from N I

onto N2, and problem (C) is equivalent to the following problem:

v 0 e N2,' J(v 0 )  min J(v) (D)

where (noting (5.3)) 3(N m

av) 2 av2
J(v) - fa [(ra) + )2 - (5.12)

P - r - 3 • (5.13)

Now we enlarge the set of admissible functions of the variational problem

(D) for solving the problem on the existence of the solution. Noting (5.11)

and that only the derivatives of first order appear in the functional J(v),

we introduce a set as follows

K= {v : v e H1 (), v - T/21 on rV IVvI 4 kr2  in 0} (5.14)P

where

1 2 av av 2
H a() - {v e L2 (Q) :-r, Te vL(Q)} (5.15)

L42l() - (v : v measurable, IV 2  < +-I (5.16)

with norm, respectively,

i 2 /2
1.i (2 [f Pv drdz]l/
P

IvI 1 (Iv1 2  + Ia v 1 2 + "v12 )1/2

-14-
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and v - T/2w is in the sense of trace (see, for instance, Necas (1967, p.

15]). K is a natural extension of N2 because of that according to theorem
1

2.2 in Cryer [1980], if u 6 H (a), then (5.2) (in the sense of trace) and

(5.11) are valid. Therefore, we have the variational problem for stress

function as follows.

Problem (E). Find v 0 6 K such that

J(v 0 ) - ain 3(v)
veK

and, equivalently,

Problem (F) . Find v0  such that

a : -v0 ) ;' 0, V v e K

where

a(v' ,v") - fa p(-av- 3w+ .v-av" )drdz

Similarly to the case of constant cross-section, we introduce the

obstacle problems relevant to problem (F). There are two obstacle problems to

be considered.

Problem (FI). Find v, such that

v 1 K1

a(v 1, Iv-v 1 ) ; 0 v v e x1

where

1
K1  (v e H1(f0) : v - T/2W on r1 ,v 1  in 01

and 1 is the solution of the Cauchy problem

i -15-

I



*1 C2( )

a k2r4, l1 T/2W in f (5.17)

* T/2w on r

Problem (F2). Find v2 such that

v e K2

a(v 2 # v-v 2 )  0 v v e K 2

where

K2 - {v e HI() v T-/2w o (1 in f ,
2 p2 2

and * 2 is the solution of the Cauchy problem

*2 e c2)

IV#212 - k 2 r 4 , *2 ) 0 in 0 (5.18)

*2 - 0 on r 0

The problem (F1) is just the problem (4.7) in Cryer (1980], there the solution

for (5.17) is also discussed.

6. * 2 - solution of the Cauchy problem (5.18)

Assume #2 is the solution of the Cauchy problem (5.18). Let p -
2

q = 2 . Then the equation is

F E p2 + q - k2r 4 , 0-o

We have along the characteristics parametrized by s in f\ 0  (Courant and

Hilbert (1962, p. 781)

dz; 8 F " 2; (6.1)

-16-
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El I

- S . (6.2)

52? 5 2 2 4(63d-. p 3- + q ar 2(p2 + q2) 2 2k2r4 (6.3)

-( - _ + - (6 .4 )
do a* 2 + j-i-

-" -(q 23 + _ (6.5)

Since 12 e c 2 (T), (6.1) - (6.5) are also valid on r 0  Given (z0o) e roe

consider the characteristic passing this point. Let the parameter value of

this point be a - 0. Mb have initial conditions (since 12 m 0 on r0  and

F -0)

z(O) - zo o r(O) - p(O) - q(O) - 1(0) 0

It follows from (6.4) that p(s) - 0. Hence z 3 z 0  (since (6.1)), and

q - kr 2  (since F - 0 and *2 2 0). Therefore, we obtain by integrating

along the characteristic

d*r

20 " 12( .) "/ f 2 + - do Sf ,-do r ot-" +a

"f q deo'foq ' f 2kr 2 d "-kr 3 /3

Since (zo,O) e r0  is arbitrary, we obtain the solution

12 (z,r) - kr3 /3 in * (6.6)

7. Properties of the set K

Denote by C0' 1 () the set of functions which satisfy Lipschitz

conditions, that in, if v e c 0 ' ( )  then

Iv(P 1 ) - v(p 2 )
h (VA - sup < 40 (7.1)

P I PP2 eg4 I P

P 'P2 @  
Jl P

-17-
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where P1 , (z1 ,r1),, P2 - (z2 ,r2)* and IPI - P2 1

E(zl - z2) 2+ (r I- r 2)21/

Lemma 7.1. The following statements are equivalent:

(a) v S6 'lM

(b) v e H( and 7az 6v e(

Proof : it has been shown (cf . Adams 11975, pp, ~.- that if V1  ,
av
y-e Lzfl) then

h I(V '11) C a1v 4 C *1 (7.2)

av X a
By similar argument we can prove that if er L ,ad v 6 (a)

then

h (vO) 4 C ( aV1  +Iam(73

Therefore, it is clear that (b) implies (a).

Now assume v e c0 '1(17h. Then v possesses a total differential a.e. in

&I (3korrey (1966, p. 65] ), ie.

V~p I V~p 2 z - 2) + Vtr ( - r2)+ 0 O1p I p2 1) (7.4)

a.e. in
av 3V

where C-, (y- are the partial derivatives in the usual sense.* Clearly,

they are measurable in D.It follows from (7.1) and (7.4) that

aav n (7.5)

Hence v e HI1 (f) and (Morrey [1966, p. 63])
av 3a, a, a, 76

av a,Then by (7.5) we obtain 0 T- eL(D), i.e. (b) is valid.

Q.E.D.

Proposition 7.2. K C K, K~2 -

-W1 Z-



Proof: Given v e K, it is enough to prove that

*1 4 v *2 .(7.7)

By Lemma 7.1 we have v e c0 'l(IN). Then (7.6) is valid. Since V 6 HI('i),

Sis absolutely continuous in r on 0 4 r 4 RWz for almost all value z

(Morrey [1966, p. 66]). Therefore, noting that v - 0 on rof we obtain

v(r,z) 4 Iv(r,z)I 0 avlr foT r

. f IVv I dr -C f, r 2 dr ' s' e. in 0

The second part of (7.7) has been proved. Now prove the first part. The

system of the characteristic equations for the Cauchy problem (5.17) has the

same form as (6.1) - (6.5). Let the parameter value a - 0 correspond to the

point on r Then it follows from (6.2) that the point in Q corresponds to

the negative value of s. Noting that v has a total differential a.e. in

0and that (7.6) is valid, we have along the characteristic

v(z(0),r(O)) - v(z(s),r(s)) - ds -f. avd+a a)o

(a f~(2p + al2q de 42 fo IVVI_(p 2 + q 2)/12 do

(2 fk 2 r4 ds fo~ d* I da - W1 z(),r(0)) - 1'(z(s),r(s))

But v(z(0),r(0)) - .(z(0),r(O)) -T/21r. Hence v ~4

Q.E.D.

Proposition 7.3. The sets K, X, and (2are closed, convex subsets in

H 1 (9).

Proof: Given v, w eK and A with 0 ( (1, we have

I7 A +-IA) 1 ((A T- + ( -A) I-.)2+ (A +v (-A) w 21/
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L( v I + (A-),+ 2(1w)2 + (1 x)2(w )2 1/2

- AlVvI + (1-X)lVwl kr2 2

By the linearity of the trace operator (NeXas (1967, p. 151) we have

Av + (l-A)w - AT/21 + (1-A)T/2W - T/21 on r I

Hence Av + (o-A)w e K and K is convex.

Let (v ) be a Cauchy sequence in K. Since H 1 (0) is a Banach space
n p

(Cryer [19801), there exists v e H () such that v + v in H 1(). it
P n P

follows from the continuity of trace operator (Ne~as (1967, p. 15]) that

v - T/21 on r 1 . By well-known subsequence argument we obtain that

IVvj C kr 2  in (. Then K is closed.

The conclusion about K, and X2  can be proved by similar argument.

Q.E.D.

8. Solution of the problem (F)

At first we solve the problem (F2 ) it suggests the solution of the

problem (F). Let (cf. Cryer (1980, Remark 5.31)

min R(z) (8.1)

k0  (3T/21)R-3 (8.2)

We need a lemma it may easily be shown by a well-know theorem (Adams

[1975, p. 54]).

Lemma 8.1. If u e C 0 ( d) n H1 (), then

tr u - u on 3

where tr u is the trace of u on an.

Proposition 8.2. If k < k 0 then the problem (F2 ) has no solution. If

k k I0  then it has a unique solution.

-20-

W,-17" , : "T -



Proof: There exists a z such that

0 4 L, R(z)-R

If k < k0  then by (6.6) and (8.2) we have

*2 (z,'R) - kR3/3 < k0R"/3 . T/2W . (8.3)

Thus, there exists a real number c and an open neighborhood E of the point

(sZR) such that

42 4 C < T/2v in E -ZN fl

Assume that K2 is nonempty. Take v e K2. Then

v ( C < T/2W in Ei 

and there exists a sequence {vn I C C(1O) such that

Iv - vl I + 0 (n + 0) . (8.4)

From the construction of vn  (Adams (1975, pp. 54-56]) wsee that there
* *

exists E2 C EI and a real number C > C such that mansr > o, where

r r 1 nE 2 ' and that

vn 4 C < T/2W in 2  (8.5)

Then by the continuity of trace operator and (8.4) we have

IV - tr vL ( IVn - tr VIL (r ' V 1) C1 V H ( ) + 0

Hence there exists a subsequence {v') which converge to tr v a.e. on Fn

and by (8.5) we obtain

* *
tr v ( C ( T/2W on F

This contradicts that tr v - T/2W on r Therefore, X2 is impty, and the

problem (F2 ) has no solution.

If k )' k 0, then let

V-mm (M 2m T/21) in I . (8.6)

Show that v e K2. Clearly, v ( *2, and

v - kr3/3 in n{r € d)

v - T/2w in Ofl{r > di

-21-
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1/3where d = (3T/2W k) So we have (Gilbarg and Trudinger [1977, p. 145])

veH(0), az 0 in

av
av . 0 in n n {r -d)

It is easy to see that

Ivl '

Hence v e H 1(0). Clearly, v e C0(11) r H'(0), and v - T/2w on r in the
p I

usual sense. So v - T/211 on r in the sense of trace of lemma 8.1, and

v e K2 .

Thus, K2  is a closed, convex, nonempty set of H ( ), and a(vv)

is a continuous, coercive, real bilinear form on H (2) ' H (a) (Cryer 11980,
P p

p. 549]); hence the problem (F2 ) has unique solution (Stampacchia [1964]).

Q.E .D.

Theorem 8.3. If k < k0  then the problem (F) has no solution. If k ) k0

then it has a unique solution.

Proof: If k < k 0  then K2  is empty. By proposition 7.2 K is also empty,

and the problem (F) has no solution.
1

If k ) k0, then take v as in (8.6). We have known that v e H (f)

2
and v - T/2W on * But from (8.7) we see that lVvi 4 kr in n. Hence

v e K, and K is nonempty. By the similar argument to that in the proof of

Proposition 8.2 we obtain that the problem (F) has a unique solution.

Q.E.D.

Remark 8.1. By virtue of theorem 8.3 and Proposition 7.2 we obtain that the

theorem 6.2 in Cryer [1980] means that the problem (F) and (FI) are equivalent

under the conditions described there.

-22-
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Remark 8.2. The conjecture that the problems (F) and (F 2 ) are equivalent is

not right. The numerical experiment we have made for the case R(z) B 1

indicates that v0  vj. This fact may be shown by analytical method in this

c'ise .
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